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Abstract. The effects of the scale dependent vacuum expectation values (VEVs) on the running masses of
quarks and leptons in non-SUSY gauge theories have been considered by a number of authors. Here we use
RGEs of the VEVs, and the gauge and Yukawa couplings in the MSSM to analytically derive new one loop
formulas for the running masses above the SUSY breaking scale. Some of the masses exhibit a substantially
different behaviour with respect to their dependence on the gauge and Yukawa couplings when compared
with earlier formulas in the MSSM derived ignoring RGEs of VEVs. In particular, the masses of the first
two generations are found to be independent of the Yukawa couplings of the third generation in the small
mixing limit. New numerical estimates at the two loop level are also presented.

1 Introduction

One of the important objectives of current research in high
energy physics is to understand the masses and mixings
of the quarks and leptons in the context of a unified the-
ory of basic interactions. Apart from accounting for the
well-known gauge hierarchy problem, the minimal super-
symmetric standard model (MSSM) remarkably exhibits
the unification of gauge couplings at the SUSY GUT scale,
MU ' 2×1016 GeV, consistent with the CERN-LEP data
[1]. The knowledge of running masses is not only essential
near the elctroweak scale, but also near the intermediate
and the GUT scales in order to test the models based upon
quark–lepton unification [2–10], the Yukawa textures of
the fermion masses [3] and the predictive ansatz for neu-
trino masses and mixings in SO(10) with a unified expla-
nation for all fermion masses [4–7].

The current experimental evidence in favour of atmo-
spheric and solar neutrino oscillations has triggered an
outburst of models in particle physics proposing specific
fermion mass matrices at high scales with or without su-
persymmetry. In a number of such models [4–8], it has
been found essential to use the running masses of the
quarks and charged leptons at the GUT scale as inputs
and obtain predictions in the neutrino sector. Running
quark masses and the ratio of VEVs of the two Higgs dou-
blets (tanβ) near the GUT scale also occur in the dim-
5 contribution to the proton decay amplitude in SUSY
GUTs [9]. More recently, an explanation for the new ex-
perimental data on the CP -violating ratio ε′/ε has been
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suggested in supergravity/superstring inspired SUSY the-
ories in terms of the running strange quark mass near the
Planck scale [8]. In view of the increasing importance of
these running masses at high scales, especially for the util-
isation in model building in supersymmetric gauge theo-
ries, it would be interesting to examine whether improved
estimates of these masses exist over those carried out re-
cently [10], while preserving such highly appealing features
as the gauge and Yukawa coupling unifications through
GUTs [11–24]. The purpose of this paper is to obtain
renormalisation group equations, new analytic formulas
and numerical estimates of the running masses above the
SUSY breaking scale (MS ' mt) in the MSSM including
the effects of the running vacuum expectation values of
the relevant Higgs scalars.

We follow the renormalisation scheme in which the
Yukawa couplings and the VEVs run separately [12,13,19,
20,25]. As the running mass of a fermion is the product
of its Yukawa coupling and the corresponding VEV, both
runnings influence the analytic formulas and the numeri-
cal predictions at higher scales (µ > MZ) as shown in this
paper. On the other hand, it is also possible, in a different
scheme, to define the VEVs in such a way that they do not
run. For example, Sirlin et al. [26] have expressed the VEV
in the SM in terms of physical parameters defined on the
mass shell. This makes it possible to avoid separate run-
nings of the VEVs and Yukawa couplings, but have just
the fermion masses directly as running quantities. While
it would be quite interesting to examine separately the
consequences of such a scheme [26], the present paper ad-
dresses the outcome of the renormalisation scheme with
runnings of both the Yukawa couplings and the VEVs [19,
20,25]. In Sect. 2, we cite examples where running VEVs
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have been utilised in the non-SUSY standard model (SM)
and the two-Higgs doublet model (2HDM) and also state
RGEs for VEVs in the MSSM. In Sect. 3 we derive RGEs
and analytic formulas. Numerical estimates are reported
in Sect. 4. Results are summarised with conclusions in
Sect. 5.

2 Running vacuum expectation values
and renormalisation group equations

With the demonstration of the possibility of b–τ unifica-
tion near the non-SUSY SU(5) GUT scale [11], a num-
ber of interesting investigations have been made earlier
and also recently to examine the behaviour of the running
Yukawa couplings as well as the running masses above the
electroweak scale. At any scale µ above the electroweak
symmetry breaking scale (≡ MZ), the running mass of a
charged fermion ‘a’ in the SM or MSSM is defined as

Ma = Yava.

Here Ya is a Yukawa coupling and va is a VEV. Follow-
ing [12,13,18–21], we treat both Ya and va to be scale
dependent, leading to

Ma(µ) = Ya(µ)va(µ). (2.1)

Thus, to derive RGE for the running masses Ma(µ), the
RGEs of the Yukawa couplings and running VEVs are
essential and they are quite well known both in the non-
SUSY and in the SUSY models.

As early as 1979, using certain approximations, Grimus
[12] has derived RGEs and analytic formulas for running
masses of quarks and charged leptons at higher scales ex-
tending up to the non-SUSY GUT scale including RGEs
of Yukawa couplings as well as the vacuum expectation
value and the latter has been obtained from Higgs scalar
wave-function renormalisation in the SM.

In their pioneering work on the infrared fixed point
behaviour of the Yukawa couplings, Pendelton and Ross
[13] have also utilised the running VEV of the non-SUSY
SM Higgs to derive RGEs of the running quark–lepton
masses above the electroweak scale extending up to the
non-SUSY GUT scale. More recently Balzeleit et al. [18]
have utilised the RGE of the VEV of the SM Higgs to
derive the RGE for the running masses and the CKM pa-
rameters at high scales. They have also examined, numeri-
cally, the behaviour of the running VEV at high scales ex-
tending up to µ ' 1010 GeV. In the non-SUSY two Higgs
doublet model (2HDM) the RGEs of the running VEVs
have been derived by Cvetic, Hwang and Kim [19]. In ad-
dition to investigating the suppression of flavour chang-
ing neutral currents in the 2HDM up to the high scale of
µ ' 1010 GeV, the authors have also obtained the run-
ning quark masses mi(µ) (i = t, b, c, s) including the scale
dependence and RGEs of the VEVs through (2.1). But,
to our knowledge, so far the scale dependence and RGEs
of VEVs in the MSSM have not been exploited to de-
rive analytic formulas and numerical estimates of the run-

ning quark–lepton masses above the electroweak scale, al-
though, as stated above, they have been used in the non-
SUSY SM and 2HSM [12,13,19]. In view of the increas-
ing importance at high scale values of the running quark–
lepton masses, which serve as inputs to models leading to
predictions for neutrino masses and mixings, we utilise the
well-known RGEs for Yukawa couplings in the MSSM as
well as the VEVs of the up-type (vu) and down-type (vd)
doublets derived in [20,21],

16π2 d
dt

ln vu,d = γvu,d
+ two loops,

γvu
=

3g2
1

20
+

3g2
2

4
− 3Tr(YUY †
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γvd
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3g2
1

20
+

3g2
2

4
− Tr(3YDY †

D + YEY †
E). (2.2)

Here t = lnµ and we take the SUSY breaking scale as
the top quark mass (MS ' mt) and assume the validity of
(2.2) for µ > mt. Details of the refinements of the analytic
formulas in SM and 2HDM will be discussed separately.

3 Renormalisation group equations
and analytic formulas for running masses

The RGEs for the running Yukawa couplings for µ > mt,
which are essential to obtain formulas for the running
masses, are [20–23],
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where c
(u)
i = (13/15, 3, 16/3), c(d)

i = (7/15, 3, 16/3) and
c
(e)
i = (9/5, 3, 0). Two loop contributions are given in [20,

21]. Taking the SUSY breaking scale MS ' mt and using
(2.1)–(3.1), the RGEs for the mass matrices for µ > mt in
the broken phase of MSSM are defined as
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16π2
(

dMD

dt

)
= (−c′

ig
2
i + YUY †

U + 3YDY †
D)MD,

16π2
(

dME

dt

)
= (−c′′

i g2
i + YEY †

E)ME , (3.2)

where ci = (43/60, 9/4, 16/3), c′
i = (19/60, 9/4, 16/3) and

c′′
i = (33/20, 9/4, 0). Defining the diagonal mass matri-

ces (M̂F ) and the Yukawa matrices (ŶF ) through a bi-
unitary transformation and the CKM matrix (V ) as in
[9], M̂F = L†

F MF RF , V = L†
ULD, M̂2
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F LF ,
Ŷ 2

F = L†
F YF Y †

F LF , we derive the RGEs for M̂2
F ,
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where the dot inside the commutator on the RHS denotes
the derivative with respect to the variable t = lnµ. The di-
agonal elements of L†

F L̇F , (F=U, D, E) are fixed to be zero
in the usual manner [22] through diagonal phase multipli-
cation. The RGEs for the Yukawa and the CKM matrix
elements remain the same as before [17,22]. Now using the
diagonal elements of both sides of (3.3), the RGEs for the
mass eigen-values are obtained by ignoring the Yukawa
couplings of the first two generations,
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Integrating these equations and using the corresponding
low energy values, the new formulas are obtained in the
small mixing limit as

mt(µ) = mt(mt)B−1
u e(3It+Ib),

mc(µ) = mc(mc)η−1
c B−1

u ,

mu(µ) = mu(1 GeV)η−1
u B−1

u ,

mb(µ) = mb(mb)η−1
b B−1

d e(It+3Ib),

mi(µ) = mi(1 GeV)η−1
i B−1

d , i = d, s,

mτ (µ) = mτ (mτ )η−1
τ B−1

e e3Iτ ,

mi(µ) = mi(mi)η−1
i B−1

e , i = e, µ, (3.5)

where the Yukawa coupling (yf ) integrals are defined as

If =
1

16π2

∫ ln µ

ln mt

y2
f (t)dt, f = t, b, τ,

and

Bu = (α1(µ)/α1(mt))43/792(α2(µ)/α2(mt))9/8

× (α3(µ)/α3(mt))−8/9,

Bd = (α1(µ)/α1(mt))19/792(α2(µ)/α2(mt))9/8

× (α3(µ)/α3(mt))−8/9.

Be = (α1(µ)/α1(mt))1/8(α2(µ)/α2(mt))9/8. (3.6)

The parameters ηα(α = u, c, d, s, b, e, µ, τ) in (3.5) are
well known QCD–QED rescaling factors [22]. For tanβ =
vu/vd, the RGE is obtained from the difference of the beta
functions, γvu − γvd

, and the values at higher scales are
given by the one loop analytic formula

tanβ(µ) = tanβ(mt)e(−3It+3Ib+Iτ ). (3.7)

Our analytic formulas for the running masses given in
(3.5) and (3.6) may be compared with earlier formulas
which have been stated treating the vacuum expectation
values to be scale independent for all values of µ > mt

[23]
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mi(µ) = mi(1 GeV)η−1
i A−1

d e(3Ib+Iτ ), i = d, s,

mτ (µ) = mτ (mτ )η−1
τ A−1

e e3Ib+Iτ ,

mi(µ) = mi(mi)η−1
i A−1

e e(3Ib+Iτ ), i = e, µ, (3.8)
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Table 1. Predictions of masses, VEVs, and tan β(µ) at two different scales in MSSM for
tan β(mt) = 10.0 and other low energy values same as in [10]

Parameter This analysis [10] This analysis [10]
µ = 109 GeV µ = 2 × 1016 GeV

tan β 7.973 10 6.912 10
vu (GeV) 142.123 173.130 128.085 173.130
vd (GeV) 17.815 17.312 18.534 17.312
mt (GeV) 107.52 149+40

−26 73.55 129+96
−40

mc (GeV) 0.3373 0.427+.035
−.038 0.2003 0.302+.025

−.027

mu (MeV) 1.178 1.470+.26
−.28 0.7059 1.04+.19

−.20

mb (GeV) 1.580 1.60 ± .06 1.004 1.00 ± .04
ms (GeV) 0.0478 0.0453+.0057

−.0063 0.0292 0.0265+.0033
−.0037

md (MeV) 2.4018 2.28+.29
−.32 1.4632 1.33+.17

−.19

mτ (GeV) 1.5177 1.4695+.0003
−.0002 1.2566 1.1714 ± .0002

mµ (MeV) 89.088 86.217 ± .00028 73.6226 68.59813 ± .00022
me (MeV) 0.422 0.40850306 0.3487 0.32502032

where

Au = (α1(µ)/α1(mt))13/198

× (α2(µ)/α2(mt))3/2(α3(µ)/α3(mt))−8/9,

Ad = (α1(µ)/α1(mt))7/198

× (α2(µ)/α2(mt))3/2(α3(µ)/α3(mt))−8/9,

Ae = (α1(µ)/α1(mt))3/22(α2(µ)/α2(mt))3/2. (3.9)

It is clear from (3.5) and (3.6) that, compared with
(3.8) and (3.9), the new formulas have very significant dif-
ferences with respect to their functional dependence on the
gauge and Yukawa couplings in all cases. The dependence
on the SU(2)L ×U(1)Y gauge coupling is weaker than the
previous results. The top quark running mass depends on
its Yukawa coupling as e3It instead of e6It . Similarly, the
b quark running mass depends upon its Yukawa coupling
as e3Ib instead of e6Ib . The b quark Yukawa coupling con-
tribution has vanished from the running τ lepton mass,
but the contribution of its own Yukawa coupling has been
increased to e3Iτ , instead of eIτ . Clearly, at the one loop
level, the masses of the first two generations are found to
be independent of the third generation Yukawa couplings.

4 Numerical estimates

In view of the present results, apart from modifying the
analytic formulas, earlier numerical mass predictions in-
cluding [10], where the µ dependence of the
VEVs has been ignored, are to be rescaled by vu(µ)/vu(mt)
for the up quark masses and by vd(µ)/vd(mt) for the
down quark and charged lepton masses. While estimat-
ing masses, VEVs, and tanβ at higher scales, we have
solved all relevant RGEs, including those of the VEVs and
tanβ(µ), up to two loops with the same inputs at µ = mt

as in [10]. We find that the input value of mt(mt) = 171±
12 GeV gives rise to the perturbative limit yt(MGUT) ≤
3.54 at tanβ(mt) ≥ 1.74+.46

−.28. Due to the running being
governed by the corresponding RGE at a two loop level,
this limit at the GUT scale turns out to be tanβ(MGUT) ≥
.52+.14

−.10, showing that actual solutions to RGEs permit
tanβ(MGUT)(≡ tan β̄) < 1 near the perturbative limit
of yt(MGUT). We also observe the saturation of the per-
turbative limit for the b quark Yukawa couplings (ȳb) for
tanβ(mt) ' 61. We have checked that the one loop ana-
lytic solutions agree with the full two loop numerical so-
lutions within 5–7% except near the perturbative limits,
where the discrepancy increases further due to larger two
loop effects.

In Table 1, we present the predictions for VEVs, tanβ
and masses at two different scales: µ = 109 GeV, and
µ = 2 × 1016 GeV for the input tanβ(mt) = 10. Our solu-
tions of RGEs yield values of vu(µ) very significantly dif-
ferent than the assumed scale independent one, although
vd(µ) is not very significantly different, for tanβ ≈ 10.
This feature leads to quite different up quark masses, the
most prominent being mt(µ). The running VEV of vu

reduces the central value of mt(µ) to nearly 72%(52%)
at the intermediate (GUT) scale. Similarly, mu(µ) and
mc(µ) are reduced to 80%(67%) and 79%(66%), respec-
tively, at the intermediate (GUT) scale as compared to
[10]. As vd(µ) is closer to the assumed scale independent
value for tanβ ' 10, all the down quark and the charged
lepton masses are closer to the values obtained in [10]. But
it is clear that significant differences will appear in these
cases also in the larger tan β region.

In Table 2, we present GUT scale predictions of the
VEVs, tanβ and third generation fermion masses, denoted
with overbars, as a function of different input values of
tanβ(mt). The GUT scale value of mt(MGUT) is found
to nearly reach a minimum, which is approximately half
of its perturbative limiting value, for tanβ ' 10. After
this minimum is reached, mt(MGUT) increases slowly with
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Table 2. Predictions of VEVs, tan β, and third generation
fermion masses at the GUT scale as a function of input values
of tan β(mt) and other input masses same as in [10]. The GUT
scale values have been denoted with overbars

tan β(mt) tan β vu vd mt mb mτ

1.75 0.521 48.497 93.078 146.144 1.280 1.253
2 0.963 80.87 83.90 100.962 1.116 1.252
5 3.35 123.13 36.74 75.138 1.008 1.252
10 6.910 128.08 18.54 73.556 1.004 1.256
20 14.18 128.75 9.079 73.92 1.022 1.2739
30 22.1 127.899 5.787 75.321 1.0613 1.3078
40 31.443 126.15 4.0119 77.869 1.1317 1.3662
50 44.476 123.05 2.766 82.768 1.274 1.484
60 80.60 116.08 1.440 98.103 1.820 1.924

increasing tanβ; but the increase is faster for tanβ ≥
50. Similarly mb(MGUT) shows more than a 10% increase
both for smaller (larger) values of tanβ below (above)
2.0(40.0) as compared to its value at tanβ = 10. Also the
numerical solution to the RGE for tanβ(µ) exhibits its
GUT scale value (tan β̄) to be significantly less than the
low energy input except until the input approaches the
value of tanβ(mt) ' 61 corresponding to the saturation
of the perturbative limit of yb(MGUT). In this region, the
GUT scale value of tan β̄ exceeds the corresponding low
energy input as shown for the case of tanβ(mt) = 60.

5 Summary and conclusion

The vacuum expectation values of Higgs scalars in the
non-SUSY SM, 2HDM and MSSM are subject to quantum
corrections and their RGEs have been derived using the
relevant wave-function renormalisation [18–20]. The run-
ning VEVs have been used effectively in the non-SUSY
SM by Grimus [12], Pendleton and Ross [13] and Balzeleit
et al. [18] and also in the 2HDM by Cvetic et al. [19]
to study and estimate the running masses of the quarks
and charged leptons and other quantities much above the
electroweak scale. In this paper we have obtained RGEs
for the running masses and derived new analytic formu-
las in the MSSM, compared to the earlier formulas in the
same model, which were derived by assuming the VEVs
to be scale independent [23] for any value of µ > mt. Our
numerical estimates are also found to be different from
those of [10], which have been obtained ignoring the scale
dependence of the VEVs. When the effects of the run-
ning VEVs are included, the one loop formulas for all the
running masses exhibit a substantially different functional
dependence on the gauge and Yukawa couplings. In partic-
ular, in the limit of vanishing CKM mixings, the running
masses of the first two generations are found to be inde-
pendent of the Yukawa couplings of the third generation.
This conclusion in the MSSM is similar to that in the SM
by Pendleton and Ross [13] who have included the RGE
for the VEV to derive formulas for the running masses

leading to their conclusion: “despite the appearance of a
large Yukawa coupling, the equations for the evolution of
light quark masses are not greatly changed”. The depen-
dence on the gauge couplings in the new formulas are also
different from the earlier ones in the MSSM. We suggest
that these improved estimates on the running masses at
high scales be used as inputs to test models proposing
a unified explanation of the quark–lepton masses includ-
ing neutrinos [5–7]. For the sake of comparison with the
numerical estimates made in [10], where the scale depen-
dence of the VEVs has been ignored, we have presented
our new estimates at µ = 109 GeV and 2 × 1016 GeV.
As our formulas and method of numerical estimation are
valid at all scales above the top quark mass as long as the
coupling constants remain perturbative, the present pro-
cedure can be adopted to estimate the running masses at
any scale, mt ≤ µ ≤ MGUT. Details of the estimates at
other scales and the effect of the variation of the SUSY
breaking scale will be examined elsewhere. Combining the
present results with those of the low energy formulas for
the neutrino masses, derived using the see saw mechanism
[24], also shows that the light Majorana neutrino masses
of the first two generations are independent of the Yukawa
couplings of the third generation.
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